OMIC TOOLS 1/30

Yusuke Kijima

Today's contents

Bicoverlapper2 MORPHIN

Bicoverlapper2

What can we do with Bicoverlapper2?

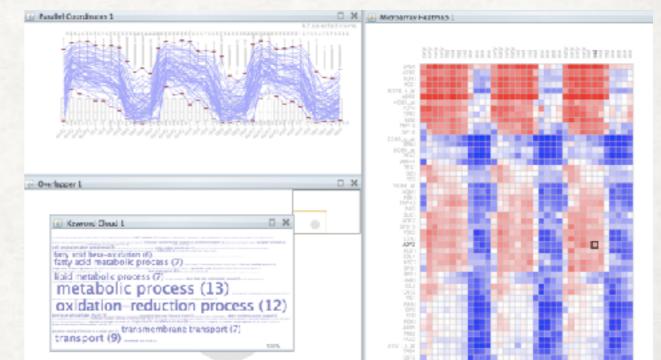
- Visualization of gene expression matrices as heatmaps
- Calculation DEGs from raw microarray data

Good

- GUI-based easy operation
- Sophisticated graphics

Bicoverlapper2

How to use?


① R package installation

- 1 install.packages("rJava") #needed for starting
- 2 source("https://bioconductor.org/biocLite.R")
- 3 biocLite("ygs98.db") #annotation DB for sample data

2 Data preparation and import

	A	в	С	D	E	F	G	н	1	
1	Saccharomyces	GSM77298	GSM77299	GSM77300	GSM77301	GSM77302	GSM77303	GSM77304	GSM77305	GSM71
2	Interval	T1	T2	т3	T4	T5	T6	17	T8	T9
3	Cycle	C1	C1							
4	IntervalGroup	early	early	early	early	mid	mid	mid	mid	late
5	10000_at	0.078088701	0.102978462	0.16390807	0.077404509	0.043068726	0.037232906	0.018635717	0.126912122	0.12
6	10001_at	1.582230608	1.488402042	1.120130514	1.102561811	0.956440591	0.948812563	0.878584011	1.048180769	2.07
7	10002_i_at	2.849542737	2.741045989	3.124830417	3.184457096	3.221871908	3.078746706	2.96399504	3.286677326	3.58
8	10003_f_at	4.555598907	3.594244748	4.381594569	4.209409486	4.186115751	4.276996171	4.35453713	4.643795871	5.67
9	10004_at	0.00816468	0.006656044	0.070311346	0.019343689	0.006462251	0.043346028	0.009347949	0.012010018	0.01
10	10005_at	1.687152244	1.539212543	1.751304697	1.507741117	1.451016812	1.516300882	1.424773575	1.591480344	2.06
11	10006_at	0.728754452	0.710030016	0.727765935	0.930178585	1.089461634	1.000785574	1.049170033	1.01648816	1.96
12	10007_at	2.119753691	2.258510181	2.192491564	2.253128297	2.051295997	2.139573678	1.875179388	1.820432488	1.14
13	10008_at	0.037180754	0.041105202	0.253175394	0.209584941	0.02567712	0.055495109	0.043114691	0.090563218	0.15
14	10009_at	0.395666637	0.123026924	0.224029062	0.116849733	0.253286449	0.211575538	0.351936974	0.438587655	0.50
15	10010_at	4.95007011	4.790036815	5.051673306	4.552896077	4.059379452	3.547684268	3.995695135	3.753267459	3.87
16	10011_at	0.338535304	0.159323063	0.226830412	0.203960394	0.200718388	0.107476367	0.217247518	0.13928404	0.23
17	10012_st	1.370553789	2.075146721	2.238675877	2.222160545	2.338349976	2.372272326	2.379232791	1.984464615	1.28
18	10013_at	0.765823688	0.923803186	1.039572642	0.958012779	0.956440591	1	0.985074073	0.997736955	1.27
19	10014_at	2.377503532	2.41524597	2.196427056	2.275422776	2.3000663	2.101263363	2.064945499	2.165395366	1.40
20	10015_st	2.572352936	3.326257893	3.920258528	3.334531084	3.371269491	2.932848393	2.664280605	2.926951237	3.7
21	10016 at	2.108405769	1.819927925	1.981044082	2.004051463	1.874027524	1.677285967	1.930352857	2.138257111	1.83

③ Result

Bicoverlapper2

- Bad
 - Updated at last in 2014 and only available for microarray data.
 - Annotation database as R package is needed.

Today's contents

Bicoverlapper2 MORPHIN

What can we do with MORPHIN?

- Web-based study for human diseases with model organism genes.
- Calculation DEGs from raw microarray data

Good

· It can convert input genes to human orthologs, annotate to the

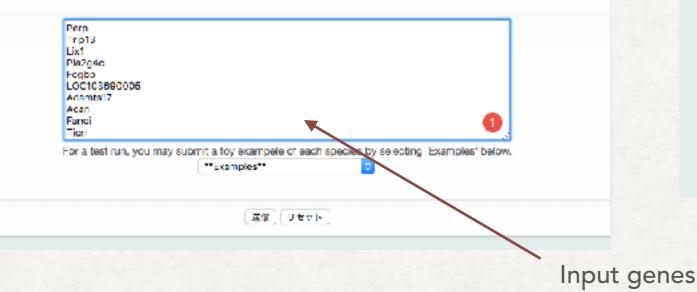
human gene network and detect disease-related pathways.

Very easy to use

How to use?

① Data submission

Here is a precomputed example using 6 worm genes modulating dater inductions, show


You may run MORPHIN with your choice of pathway/disease database only (check your choice beirw).

Model Species

Select Your Species

Inparalog score threshold (bigger than or equal to) * Default threshold value is recommanded. 0 (Very sensitive, Default)

Input a set of model organism genes for a function/pathway/phenotype. (Max=500). Each gene name must be separated by comma, tab, white space or new line. Expected calculation time : 10 ~ 20 minutes.

Gurrenby, MORPH	N block the following nine model organisms:				
Model organism	Gene names recognized by MORPHIN				
Seecharomyces cerevision (yeast)	ORF ID (e.g., YALC02W) or gene symbol (e.g., VPS8)				
Overoritabol/3 elegans (worm)	Cone ID (s.g., AC3.R) or gene symbol (s.g., col-151)				
Conceptible melanogeoler (b)	Plytose D (e.g., PBgr0042137) or gene symbol (e.g., CG18814)				
Denits revits (netsratish)	Entries ID (e.g., 30580) or gene symbol e.g., $\left(pXI \right)$				
Mus musculus (mouse)	Entrez ID (e.g., 22069) or gene symbol (e.g., Trp63)				
Pattus norvegious (rat)	Entrez ID (e.g., 24842) or gene symbol (e.g., Tp53)				
Schtrosecolaromycev primbel (boston yeard)	Pombase ID (e.g., SPSC22H10.10) or gene symbol (e.g., $s(p21)$				
Chriynslefurr discubieum (soli-living amoebe)	DictySame ID (e.g., DDB_GI251507) or gene symbol (e.g., coK)				
Xeropaus lawers (airtican clawed incg)	Uniprol Entry name (e.g., HAND1_XENLA) or gene symbol (e.g., ehand				

Available species

2 Waiting

Result

(1)Associated pathway by Fisher's test

2. Associated human disease pathways by Fisher's exact test

P-value : Fisher's exact test p-value, Q-value : adjusted p-value by false discovery rate m : 4 guery gene human orthologs, n : 4 disease pathway genes, k : 4 genes for intersection.

🙀 : A network between human orthologs of query genes and classice genes and prioritized human orthologs of query genes for each classice pathway.

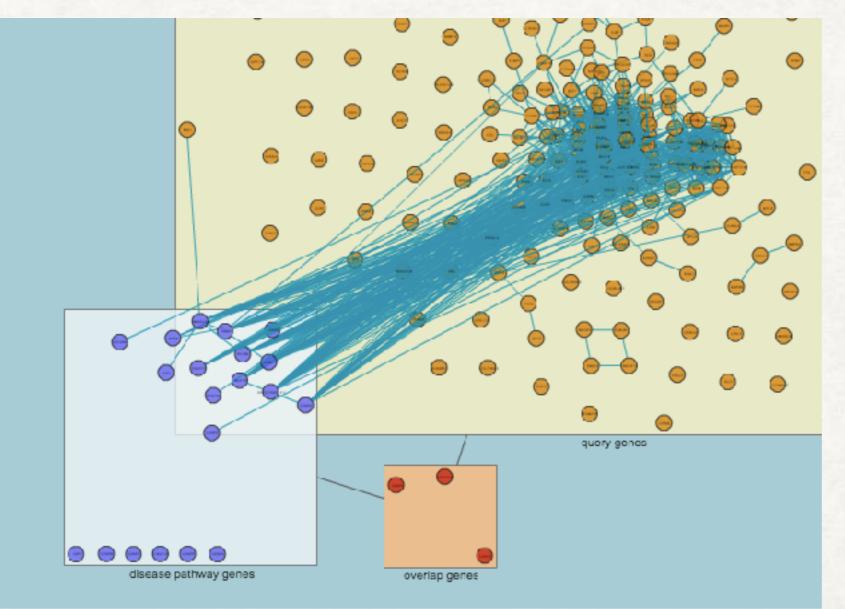
Download a tab-separated tablet txt)

Rank.	Pathway DB	Description	P-value	Q-value	m	п	ĸ	
1	GOEP	mitotio cell cyple	1.509e-17	6.582e-14	344	879	88	鍧
2	GCEP	microsubule-based movement	6.088e-12	1.1170-8	344	24	10	畲
а	REGG	Odi ovolo - Homo sapions (human)	1.0820-9	2.0886-7	344	124	16	1 ¹
4	REGG	Viral cardinocenesis - Homo saplens (human)	1.5136-9	2,000e-7	344	205	20	(1)
5	KEGG	Alcoho Ism - Homo sapiens (human)	6.3300-9	4.8580-7	344	190	18	圍
9	KEGG	<u>Systemio lupus crythematosus - Horro</u> segtens (numeri)	5.2540-9	4,8980-7	344	133	16	畲
7	GOBP	mbasia	1.1186-7	1.3758-4	2944	33	а	¢
а	GOBP	G1/S transition of mhotic cell cycle	1.2736-6	1.1778-3	344	135	13	Ø
8	GCEP	mhotic Miphase	1.5350-6	1,2100-8	344	6	4	嬼
10	00	retinoblasterna	1.2676-6	1.7366-3	344	114	12	畲

2 Associated pathway by RIDDLE method

3. Associated human disease pathways by RIDDLE

FDR : False discovery rate calculated by RIDDLE


m : # query gene human orthologs, n : # disease pathway genes,

😫 : A network between human orthologs of query genes and disease genes and prioritized human orthologs of query genes for each disease pathway.

Download a tab-separated table/ tot)

Bank	Pathway DB	Description	FDR	m	n	
1	GCBP	CENP-A containing nucleosome assembly st centromere	4.553e-1	344	23	1 Contraction Cont
2	GOBP	nucleosome assembly	4.604e-1	344	26	×.
з	GAD	HIV-1	4.640e-1	344	57	¢۲
4	GAD	Hemophromatesis	4.7366-1	344	28	¢۲
6	GAD	Factor VII	4.7896-1	844	19	1 Car
6	GCEP	mitolia cell cycle checkpoint	4.8266-1	844	24	¢۲
7	GAD	Thyrotropin	4,833e-1	344	50	蹾
8	00	multiple epiphysiai dyspisais	4,8456-1	344	4	Ø
8	GCBP	double-strand break repain	4.863e-1	344	48	Ø
9	GWASCAT	Bipolar disorder and schizophrenia	4.663e-1	344	56	×.

- Result
- ③Network plot

Each blue line show functionally relational genes.

Bad

The version of database is old (updated in 2013~2014)

No remarkable advantages to use this website.